Развивавшееся горное дело и промышленность ставили задачи, требовавшие для их разрешения знания механики. Рудничные выработки встречали подземную воду. Нужно было найти способ бороться с ее притоком.
В XIII–XV веках уже возводились большие здания и сооружения. Во Флоренции был построен огромный собор. Проектирование его купола представляло серьезную задачу статики: чтобы соорудить этот купол, понадобилась сложная система рычагов и наклонных плоскостей.
Одни годами просиживали в темных лабораториях, занимаясь алхимическими опытами. Другие трудились над изготовлением «живых» автоматов — голубей, уток. Даже прославленный в XVI веке математик Иероним Кардан (1501–1576) еще не видел в опытах воспроизведения в желаемых условиях физического явления.
Между сторонниками Птолемея и Аристотеля шла борьба. Одни видели спасение в возвращении к твердым сферам, другие возражали, что только схема Птолемея дает возможность предвычислять положение планет.
Бруно, воспитанный в доминиканском монастыре, должен был стать монахом. Но, познакомившись с учением древних философов-материалистов и с трудом Николая Коперника, он сделался ярым врагом аристотелианства. Не стеснявшийся высказывать открыто свои взгляды, Бруно скоро был вынужден бежать из Италии от преследования инквизиторов.
Хотя прошло всего несколько лет после выхода в свет (и к тому же на латинском языке) бессмертного труда Коперника, а его идея уже обсуждалась флорентийцами.
В XVI веке в Италии уже работало много математиков — последователей Тартальи. Эти ученые обладали достаточными познаниями для вывода законов механики. Но они не были экспериментаторами и не могли дать новое направление этой науке.
Еще в студенческие годы Галилей заметил, что хотя размах колебаний маятника с течением времени становится все меньше, но период их остается одинаковым. Это открытие было сделано им в соборе, где он наблюдал качание люстр, измеряя время биениями своего пульса.
Голландский ученый Симон Стевин и Галилей почти одновременно дали вывод закона наклонной плоскости.
Из таких наблюдений и вытекали воззрения древних ученых на движение тел. Например, Аристотель не имел никакого понятия об инерции движения. Он был уверен, что тело движется только под действием силы и немедленно останавливается, как только прекращается ее действие.
Галилей избрал, однако, другой путь для проверки теоретически найденных им законов. Он прибег к помощи наклонной плоскости.
Ядро вылетает из пушки под огромным давлением расширяющихся горячих газов. По выходе из ствола оно двигалось бы по инерции равномерно и прямолинейно, если бы его не притягивала Земля. Но как только оно покинет ствол пушки, притяжение Земли заставляет его падать.
Траектория брошенного тела определяется сложением поступательного движения и свободного падения.
Проведя свою молодость в далеких плаваниях, Стевин близко познакомился с вопросом об устойчивости судна. Позднее он был инспектором водных сооружений Голландии, имевших огромное значение для существования этой маленькой страны. Ему пришлось столкнуться с определением давления на ворота шлюзов и тому подобными задачами.
Познакомившись с «Беседами о двух новых науках» Галилея, Торричелли увлекся вопросами механики и написал сочинение «Трактат о движении под действием тяжести». В этом труде он развивал идеи Галилея, стремясь дать его законам динамики новые доказательства.
Узнав об этой работе молодого ученого, Галилей пригласил его к себе. Торричелли приехал в 1641 году к Галилею в его домик в Арчетри, где и остался до кончины великого механика.
В первой половине XVII века еще не было известно, что воздух с большой силой давит на земную поверхность. Действие воздушного насоса оставалось непонятым.
Сын богатого землевладельца, Гюйгенс получил, по желанию отца, юридическое образование в Лейденском университете. Но юноша не хотел стать адвокатом: его влекли к себе астрономия, физика, математика и механические исследования.
Но как Земля заставляет падать на ее поверхность брошенное тело? Как воздействует Солнце на планеты, удерживая их на орбитах?
Коперник, размышлявший о строении солнечной системы, не ставил себе этих вопросов. Не думал о природе тяжести и Галилей, исследуя законы свободного падения тел. Впервые на вопрос о причине движения планет по орбитам пытался ответить современник Галилея — немецкий астроном Иоганн Кеплер (1571–1630).
Возвести стройное здание механики, дать строгие формулировки и доказательства ее принципам и, наконец, создать небесную механику оказалось по силам только английскому физику и математику Исааку Ньютону (1643–1727).
Но, открыв закон всемирного тяготения, Ньютон уже знал, что масса и вес — не одно и то же.
С древнейших времен люди измеряли массу тела весом, как количество материи.
Но как движутся части машин? Какие усилия возникают в них при работе?
Части машин — не материальные точки, движущиеся под действием сил. В них возникают напряжения, и они действуют одна на другую. Чтобы рассчитывать машины, стало необходимым разработать механику твердого тела, едва затронутую в работах Гюйгенса и Ньютона.
Волчок Эйлера представляет собой подобие колокольчика с утолщенным нижним краем. Точка опоры его находится внутри и совмещается с центром тяжести волчка.
Суточное движение звездного неба — кажущееся явление. Это отражение вращения самой Земли. Когда Земля повернется около своей оси на какой-либо угол, на такой же угол в обратном направлении изменится и направление, в котором мы видим каждую звезду.
Жизнь этого ученого может служить примером достижения больших успехов личным трудом.
Даламбер не знал своих родителей. Он был найден ребенком на паперти одной из церквей в Париже. Воспитанный в семье стекольщика, Даламбер занимался для заработка юридическими науками. Но, увлекшись математикой, он проявил в ней большие способности и быстро приобрел известность среди ученых.
Одна из таких фиктивных сил, которую вводят при изучении силы тяжести, — «центробежная» сила. Она отсутствует на полюсах и достигает наибольшей величины на экваторе, где составляет силы тяжести. В других точках земной поверхности «центробежная» сила имеет среднее значение и направлена перпендикулярно к земной оси в противоположную сторону от нее.
В Европе появилось большое количество ранее мало известных товаров: хлопка и других колониальных продуктов. Цеховое ручное производство не могло справиться с задачами, возникшими в промышленности. В Англии, где быстро развивалось капиталистическое производство, изобретались машины — двигатели и станки.
Вот как писал об этом поэт-философ Лукреций Кар в своей поэме «О природе вещей»:
Вся совокупность материи не была сжата плотнее
В целом своем никогда, как и не была более редкой,
Уже «Арифметика» Магницкого (1669–1739), вышедшая в 1703 году, содержала некоторые сведения по механике. В этом учебнике были даны понятия о равновесии, движении, скорости и силе.
В России один за другим открывались университеты — в Казани, Петербурге, Харькове. Они стали выпускать русских математиков и механиков.
Замечательный пример влияния теоретиков на развитие техники — деятельность известного русского математика П. Л. Чебышева (1821–1894).
Руководствуясь этим соображением, русский морской офицер и изобретатель А. Ф. Можайский (1825–1890) создал в 1876 году первую в мире модель самолета, которая могла свободно лететь, сохраняя равновесие.
Впервые проблема полета в мировое пространство теоретически была разрешена русским ученым К. Э. Циолковским (1857–1935). Сын лесничего, К. Э. Циолковский был самоучкой. Не имея средств, чтобы получить систематическое образование, он сам прорабатывал курсы начальной и высшей математики, физики и механики.
В древности Архимеду удалось установить закон равновесия сил, приложенных к рычагу. Доказательство закона рычага, данное этим математиком, основывалось на опытах со взвешиванием тел. Происхождение этих аксиом проявило себя даже в их формулировке.